Dió Magazin
Irodalmi és ismeretterjesztő portál

Hogyan működnek a villámok?

Hogyan működnek a villámok? 

 A villám egyfajta elektromos gázkisülés, ami felhőn belül, felhők között, vagy a talaj és felhők között jön létre. Többnyire elágazásos szerkezetű, de van felületi villám is, amely a felhők felületén keletkezik. Ritkább jelenség az egyenes villám és a gömbvillám. E két utóbbira nincs általánosan elfogadott tudományos magyarázat. Az egyenes villám jellemzője, amiről a nevét is kapta az, hogy a vonala nélkülözi a villámokra általában jellemző elágazásokat (a villám vonala valójában nem egyenes, hanem íves is lehet). Az egyenes villám hurkot is leírhat.

A villám keletkezésének pontos folyamata még tudományos viták tárgya, de elfogadott magyarázat, hogy a villám kialakulása a felhők vízcseppjeinek, jégkristályainak súrlódására, széttöredezésére vezethető vissza, aminek következtében az elektromos töltések szétválnak a felhőn belül. A felhő felső felén a pozitív, alul a negatív töltések halmozódnak fel.

A víz légkörben való körforgása során a nedvesség felhővé áll össze. A felhőt sok millió, apró vízcsepp alkotja, ugyanakkor jégkristályokat is tartalmaz, ezek súlya egyelőre annyira kicsi, hogy a levegőben lebegnek. A földfelszín felőli párolgás felfelé mozgatja az apró vízcseppeket, amik útjuk során összeütköznek más hasonló vízcseppekkel, jégkristályokkal, vagy a lefelé hulló hópelyhekkel. Az apró ütközések következtében a felfelé haladó nedvességben elektronhiány lép fel, így elektromos töltésszétválasztás jön létre a felhőn belül. Az elektronok a felhő alsóbb területén halmozódnak fel, ami így elektromosan negatív töltésű lesz.

Az ütközéseken felül a megfagyásnak is fontos szerepe van. Ahogy a felfelé szálló nedvesség a felhő felsőbb részében hidegebb levegővel találkozik, elkezd megfagyni, tömege növekedni kezd, ezért lefelé hullik és közben negatív töltésűvé válik, a még nem fagyott, felfelé haladó nedvesség pedig pozitív töltésű lesz.

A töltésszétválasztás elektromos teret hoz létre, ami az elhelyezkedő töltéseknek megfelelően alul negatív, felül pozitív irányultságú. Az elektromos tér erőssége a felhalmozott elektromos töltésekkel arányos. Ahogy ennek az erőtérnek az erőssége egyre növekszik, a földfelszínben lévő negatív töltésekre taszító erőt gyakorol, így azok a földben mélyebbre süllyednek. A földfelszín ennek hatására pozitív töltésű lesz.

Amikor az elektromos tér erőssége eléri a több tízezer Volt / centiméter értéket, az elektromos töltésekre ható vonzóerő miatt a töltések a levegő molekuláiban is kezdenek szétválni, a felhő alja a közelében lévő pozitív töltésű levegőmolekulákra vonzóerőt gyakorol, így azok felfelé, a felhő alja felé mozdulnak el. A töltések szétválását a levegőben ionizációnak nevezik. Az ionizált levegő (más néven: hideg plazma) elektromos vezetőképessége sokkal jobb, mint a nem-ionizált (de egyéb tulajdonságaiban azonos) levegőé. (gyakran az elektromosan jól vezető fémeket is úgy jellemzik, mint pozitív atommagokat, amiket könnyen mozgó elektronfelhő vesz körül). Az elektronok kis tömegük miatt könnyen elmozdulnak, és áramlásuk elnevezése: elektromos áram. A levegő ionizációs folyamata során vékony, hosszabb-rövidebb járatok alakulnak ki a felhő és a földfelszín között, amikben az elektronok mozogni tudnak. A villám nem egy lépésben csap le, mivel ezek a hosszabb-rövidebb vezető szakaszok nem egyszerre alakulnak ki, hanem fokozatosan.

Az elektromosan vezető csatornák kialakulási folyamatának végén a felhő és a földfelszín összekapcsolódik egy vagy több, elektromosan vezető csatornán keresztül, amin először egy gyengébb „elővillám" fut végig, majd egy vagy több erősebb töltésáramlás megy végbe, gyakran ugyanazon a csatornán, hiszen abban a pillanatban azon a legkisebb az elektromos ellenállás.

Amikor a kétféle töltés találkozik, a töltések kiegyenlítődnek. A folyamat során a villámban haladó elektromos áram erősen felhevíti a levegőt, ami hirtelen kitágul, majd összeomlik. Ez erős fénnyel és hangrobbanással, azaz nagy robajjal jár. Ugyanazon az ionizált légcsatornán több villám is áthalad (akár 30-40), ezért a szemtanú számára úgy tűnhet, hogy a fő villámcsapás hosszabb ideig tartott, mint az azt megelőző gyengébb villanások. Ezt az illúziót erősíti, hogy a többszöri villámlással járó morajlások egybeolvadnak.

A villám sebessége 180 km/s (egy 18 km magasságban lévő felhőtől a földig a kész villám 0,1 másodperc alatt végighalad, alacsonyabb felhő esetén az idő még rövidebb). A hőmérséklet elérheti a 30 000 kelvint. A villámok 75%-a felhőn belül zajlik le. A villám fénye látható- és UV- fényből áll.

Ha a villám homokos talajba csap, üvegszerű anyag keletkezik, aminek a neve fulgurit.

Megkülönböztetjük továbbá a „szárazvillám" és „nyári villám" jelenségeket is. A köznyelv a „szárazvillám" kifejezéssel jelzi, ha villámláskor nem esik az eső, azaz a felhőből hulló csapadék nem éri el a talajt. A „nyári villám" a szemlélőtől annyira távol látható, hogy onnan hanghatás nem, vagy csak gyengén érkezik. A távoli helyen ilyenkor általában esik az eső, de azt az észlelő nem érzékeli.

A „szárazvillám" veszélyessége abban áll, hogy nem jár a talajra hulló csapadékkal, ezért könnyen bozóttüzeket okoz (ez különösen Észak-Amerikai nyugati területeire jellemző). A „szárazvillám"-ok megjelenését ezért külön figyelik az USA-ban.

Bólintóni esete a Húsvéti nyúllal
Esőmese

Kapcsolódó bejegyzések

 

Hozzászólások

Még nincs ilyen. Legyél te az első hozzászóló.
Már regisztráltál? Bejelentkezés itt
Vendég
2020. szeptember 22. kedd

Captcha kép

By accepting you will be accessing a service provided by a third-party external to https://aranydio.com/